Synthesis and characterization of platinum(II) complexes with terminal alkynes analogous to Zeise's salt - structure of $[\mathrm{K}(18$-crown- 6$)]\left[\mathrm{PtCl}_{3}(\mathrm{PhC} \equiv \mathrm{CD})\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$

Michael Gerisch ${ }^{\text {a }}$, Frank W. Heinemann ${ }^{\text {a }}$, Horst Bögel ${ }^{\text {b }}$, Dirk Steinborn ${ }^{\text {a, * }}$
${ }^{\text {a }}$ Institut für Anorganische Chemie der Martin-Luther-Universität Halle-Wittenberg, Halle / Saale D-06099, Germany
${ }^{\text {b }}$ Institut für Physikalische Chemie der Martin-Luther-Universität Halle-Wittenberg, Halle / Saale D-06099, Germany

Received 4 June 1997

Abstract

The reaction of $[\mathrm{K}(18-\mathrm{cr}-6)]\left[\mathrm{PtCl}_{3}(\mathrm{MeC} \equiv \mathrm{CMe})\right]^{1}$ (1a) with 1 -alkynes $\mathrm{RC} \equiv \mathrm{CH}(\mathrm{R}=n-\mathrm{Pr}, n-\mathrm{Bu}, t \mathrm{Bu}, \mathrm{Ph})$ and $\mathrm{PhC} \equiv \mathrm{CD}$ in methylene chloride at low temperatures results in the formation of $[\mathrm{K}(18-\mathrm{cr}-6)]\left[\mathrm{PtCl}_{3}(\mathrm{RC} \equiv \mathrm{CH})\right](\mathbf{2 a - d})$ and $[\mathrm{K}(18-\mathrm{cr}-6)]\left[\mathrm{PtCl}_{3}(\mathrm{PhC} \equiv \mathrm{CD})\right]$ (2e), respectively. The complexes were characterized by microanalysis as well as by NMR, Raman and IR spectroscopy. The stretching frequencies $\nu(\equiv \mathrm{C}-\mathrm{H}(\mathrm{D}))$ and $\nu(\mathrm{C} \equiv \mathrm{C})$ are lowered by $141-151 \mathrm{~cm}^{-1}$ and $159-200 \mathrm{~cm}^{-1}$, respectively, due to the coordination of the alkyne to the PtCl_{3} unit. The molecular structure of $2 \mathrm{e} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (triclinic, $\mathrm{P} \overline{1}, a=10.155(2), b=11.368(3), c=14.047(2) \AA$, $\left.\alpha=86.28(2), \beta=70.42(1), \gamma=77.64(2)^{\circ}, Z=2\right)$ reveals an angle between the PtCl_{3} and $\mathrm{Pt}(\mathrm{C} \equiv \mathrm{C})$ planes of $82.5(5)^{\circ}$ and an out-of-plane bending of the phenyl group of $15.2(9)^{\circ}$. The phenyl group is twisted by $33.9(7)^{\circ}$ from the $\mathrm{Pt}(\mathrm{C} \equiv \mathrm{C})$ plane. There are tight contacts between the cation $[\mathrm{K}(18-\mathrm{cr}-6)]^{+}$and the anion $\left[\mathrm{PtCl}_{3}(\mathrm{PhC} \equiv \mathrm{CD})\right]^{-}$via the trans-chlorine and one of the cis-chlorines $(d(\mathrm{~K} 1-\mathrm{Cl} 3)=3.331(3) \AA, d(\mathrm{~K} 1-\mathrm{Cl} 2)=3.220(3) \AA)$. © 1997 Elsevier Science S.A.

Keywords: Platinum; Alkyne complexes; Crown ether complexes; X-ray diffraction

1. Introduction

The synthesis of Zeise's salt, $\mathrm{K}\left[\mathrm{PtCl}_{3}\left(\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}\right)\right]$. $\mathrm{H}_{2} \mathrm{O}$, and the elucidation of the mode of olefin bonding to platinum are landmarks in organometallic chemistry [1,2]. Alkyne complexes of Zeise's salt type, $\mathrm{K}\left[\mathrm{PtCl}_{3}\left(\mathrm{RC} \equiv \mathrm{CR}^{\prime}\right)\right]$, were prepared by Chatt et al. $[3,4]$ but only with internal alkynes with bulky tert-butyl substituents. Furthermore, Zeise's salt type complexes with oxygen functionalized alkynes such as $\mathrm{Me}_{2}(\mathrm{OH}) \mathrm{CC} \equiv \mathrm{CC}(\mathrm{OH}) \mathrm{Me}_{2}$ [5-7] and with diphenyl acetylene [8] were described.

We found that $[\mathrm{K}(18-\mathrm{cr}-6)]_{2}\left[\mathrm{Pt}_{2} \mathrm{Cl}_{6}\right]$ reacts smoothly in methylene chloride with a wide variety of internal alkynes according to Eq. (1) to give the crown ether adducts of Zeise's salt type alkyne complexes [K(18-cr$6)]\left[\mathrm{PtCl}_{3}\left(\mathrm{RC} \equiv \mathrm{CR}^{\prime}\right)\right]$ (1) [9]. Owing to platinum cat-

[^0]alyzed oligo- and polymerization reactions, attempts failed to synthesize complexes 1 with terminal alkynes (1-pentyne, acetylene) in this way. However, the 1pentyne complex could be prepared via a ligand substitution reaction from the reaction of the 2-butyne complex ($\mathbf{1 a}, \mathrm{R}=\mathrm{R}^{\prime}=\mathrm{Me}$) with 1-pentyne.

1

To date, there have been no further reports on platinum(II) complexes with terminal alkynes without elec-tron-withdrawing substituents. Five-coordinate platinum(II) complexes with alkynes having electronwithdrawing substituents of the types $\left[\mathrm{PtMe}\left(\mathrm{HB}(\mathrm{pz})_{3}\right\}\right.$ ($\mathrm{RC} \equiv \mathrm{CH}$)] ($\mathrm{pz}=$ pyrazolyl; $\mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}, \quad \mathrm{C}(\mathrm{O}) \mathrm{Me}$, $\left.\mathrm{CF}_{3}\right), \quad\left[\mathrm{Pt}(\mathrm{X}) \mathrm{Me}(\mathrm{N}-\mathrm{N})\left(\mathrm{MeO}_{2} \mathrm{CC} \equiv \mathrm{CH}\right)\right] \quad(\mathrm{N}-\mathrm{N}=$ bidentate nitrogen ligand) and dinuclear complexes with
bridging terminal alkynes of the type $\left[\mathrm{Pt}_{2} \mathrm{Cl}_{2} \mathrm{Me}_{2}(\mathrm{~N}-\right.$ $\mathrm{N})(\mu-\mathrm{RC} \equiv \mathrm{CH})]\left(\mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}, \mathrm{Ph}\right)$ are known [10,11].

Here we report the synthesis and characterization of 1 -alkyne complexes of Zeise's salt type and the X-ray structure of the phenylacetylene complex.

2. Results and discussion

2.1. Syntheses

The 2-butyne complex $[\mathrm{K}(18-\mathrm{cr}-6)]\left[\mathrm{PtCl}_{3}\right.$ ($\mathrm{MeC} \equiv \mathrm{CMe}$)] (1a) reacts with 1 -alkynes in a ligand substitution reaction to give the 1 -alkyne complexes $[\mathrm{K}(18-\mathrm{cr}-6)]\left[\mathrm{PtCl}_{3}(\mathrm{RC} \equiv \mathrm{CH})\right]$ (2) with liberation of 2butyne (Eq. (2)).

	$\quad \mathrm{R}$
$\mathbf{2 a}$	$n-\mathrm{Pr}$
$\mathbf{2 b}$	$n-\mathrm{Bu}$
$\mathbf{2 c}$	$t-\mathrm{Bu}$
$\mathbf{2 d}$	Ph
$\mathbf{2 e}$	$\mathrm{Ph}(\mathrm{D})^{\text {a) }}$
a)	$\mathrm{PhC} \equiv \mathrm{CD}$

Methylene chloride was used as solvent and the reaction temperature was $-20{ }^{\circ} \mathrm{C}$. At temperatures higher than $-15{ }^{\circ} \mathrm{C}$ the reaction mixtures turn to dark color owing to platinum catalyzed oligomerization reactions of the terminal alkynes. As long as the 1 -alkynes used in the reactions (Eq. (2)) are less volatile than 2-butyne, a complete conversion of $\mathbf{1 a}$ into the 1 -alkyne complexes 2 could be achieved by repeated addition excess of 1 -alkyne to complex 1 a followed by evaporation of all volatile products in vacuo.

The 1-alkyne complexes 2 were isolated as yellow powdered substances that are moderately air-sensitive. The phenylacetylene complexes $\mathbf{2 d}$ and $\mathbf{2 e}$ crystallize as solvates with methylene chloride. Solutions of complexes 2 decompose within few minutes at room temperature. In the solid state, they are stable for several hours at room temperature. Heating (ca. $5 \mathrm{~K} / \mathrm{min}$) of complexes 2 leads to decomposition between 85 and 95 ${ }^{\circ} \mathrm{C}$.

2.2. NMR and vibrational spectra

All complexes 2 were characterized by microanalysis as well as NMR, IR and Raman spectroscopically. Selected NMR data are compiled in Table 1. The chemical shifts of terminal protons (${ }^{1} \mathrm{H}$) are between 2.9 and 3.9 ppm . Thus, the coordination of alkynes to platinum(II) in complexes 2 gives rise to downfield shifts of these protons by about $0.8-1.0 \mathrm{ppm}$. In marked contrast to it, the terminal protons in platinum(0) alkyne complexes are shifted downfield typically by about $3.9-4.8 \mathrm{ppm}[12,13]$. Thus, the chemical shifts are in the range of olefinic protons ($6.2-6.8 \mathrm{ppm}$) indicating a much stronger π back-donation in platinum(0) than in platinum(II) alkyne complexes. In five-coordinate platinum(II) alkyne complexes the downfield shift of the methine proton amounts to $1.5-1.9 \mathrm{ppm}[10,11]$. The ${ }^{13} \mathrm{C}$ NMR resonances of the acetylenic carbons $\equiv C \mathrm{R}$ and $\equiv C H(D)$ in complexes 2 are upfield shifted by $4.0-8.1$ and $10.9-13.3 \mathrm{ppm}$, respectively. Contrary to that, very strong (ca. 40 ppm) [14] and slight (ca. 3 ppm) [11] downfield shifts were observed in platinum(0) and five-coordinate platinum(II) alkyne complexes, respectively.

Selected IR and Raman data of complexes 2 are listed in Table 2. Compared with the non-coordinated alkynes, the stretching frequencies $\nu(\mathrm{C} \equiv \mathrm{C})$ and $\nu(\equiv \mathrm{C}-\mathrm{H})$ are lowered by about $180-200 \mathrm{~cm}^{-1}$ ($8-$ 10%) and $140-180 \mathrm{~cm}^{-1}(4-5 \%)$, respectively. The lowering of the $\mathrm{C} \equiv \mathrm{C}$ frequencies is in full agreement with those in the analogous complexes 1 with internal alkynes [9]. As in the alkyne complexes of Zeise's salt type, the relative lowering of the $\nu(\mathrm{C}=\mathrm{C})$ in the olefin

Table 1
Selected ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data for $[\mathrm{K}(18-\mathrm{cr}-6)]\left[\mathrm{PtCl}_{3}(\mathrm{RC} \equiv \mathrm{CH})\right]$ (2)

	R	$\delta(\equiv \mathrm{CH})$ [ppm]	$\begin{aligned} & \Delta \delta^{\mathrm{a}} \\ & {[\mathrm{ppm}]} \end{aligned}$	$\begin{aligned} & { }^{2} J(\mathrm{Pt}, \mathrm{H}) \\ & {[\mathrm{Hz}]} \end{aligned}$	$\begin{aligned} & \begin{array}{l} { }^{4} J(\mathrm{H}, \mathrm{H}) \\ {[\mathrm{Hz}]} \end{array} \end{aligned}$	$\begin{aligned} & \Delta^{4} J(\mathrm{H}, \mathrm{H})^{\mathrm{b}} \\ & {[\mathrm{~Hz}]} \end{aligned}$	$\begin{aligned} & \delta(\equiv C H) \\ & {[\mathrm{ppm}]} \end{aligned}$	$\begin{aligned} & \Delta \delta^{\mathrm{a}} \\ & {[\mathrm{ppm}]} \end{aligned}$	$\begin{aligned} & \delta(\equiv C R) \\ & {[\mathrm{ppm}]} \end{aligned}$	$\begin{aligned} & \Delta \delta^{\mathrm{a}} \\ & {[\mathrm{ppm}]} \end{aligned}$
2 a	$n-\mathrm{Pr}$	2.91	1.01	70	2.1	-0.5	56.6	-11.5	80.4	-4.0
2b	$n-\mathrm{Bu}$	2.91	0.98	68	2.2	-0.4	58.3	-9.6	80.1	-4.4
2c	t-Bu	2.87	0.91	70			56.2	-10.9	87.9	-4.4
2d	Ph	3.86	0.77	66			63.8	-13.3	75.6	-8.0
2 e	$\mathrm{Ph}(\mathrm{D})^{\text {c }}$						64.0	-13.1	75.5	-8.1

[^1]Table 2
Selected IR and Raman data for $[\mathrm{K}(18-\mathrm{cr}-6)]\left[\mathrm{PtCl}_{3}(\mathrm{RC} \equiv \mathrm{CH})\right]$ (2)

R	$\nu(\mathrm{C} \equiv \mathrm{C})$ $\left[\mathrm{cm}^{-1}\right]$	$\Delta \nu(\mathrm{C} \equiv \mathrm{C})^{\mathrm{a}}$ $\left[\mathrm{cm}^{-1}\right]$	$\Delta \nu / \nu_{\text {free alkyne }}$ $[\%]$	$\nu(\equiv \mathrm{C}-\mathrm{H})$ $\left[\mathrm{cm}^{-1}\right]$	$\Delta \nu(\equiv \mathrm{C}-\mathrm{H})^{\mathrm{a}}$ $\left[\mathrm{cm}^{-1}\right]$	$\Delta \nu / \nu_{\text {free alkyne }}$ $[\%]$	
$\mathbf{2 a}$	$n-\mathrm{Pr}$	1937	-181	-8.5	3142	-177	-5.3
2b	$n-\mathrm{Bu}$	1938	-206	-9.6	3169	-144	-4.3
2c	$t-\mathrm{Bu}$	1905	-202	-9.6	3171	-141	-4.3
2d	Ph	1908	-202	-9.6	3149	-142	-4.3
$\mathbf{2 e}$	$\mathbf{P h}(\mathrm{D})^{\mathrm{b}}$	1828	-159	-8.0	2433^{c}	-151^{c}	-5.8

${ }^{\mathrm{a}} \Delta \nu=\nu_{\text {complex }}-\nu_{\text {free aikyne }}$.
${ }^{\mathrm{b}} \mathrm{PhC} \equiv \mathrm{CD}$ as ligand.
${ }^{\mathrm{c}}{ }^{\nu}(\equiv \mathrm{C}-\mathrm{D})$
${ }^{c} \nu(\equiv C-D)$.
complexes $\mathrm{K}\left[\mathrm{PtCl}_{3}\right.$ (olefin)] amounts to about 10%, too [15]. As expected, the $\nu(\mathrm{C} \equiv \mathrm{C})$ in platinum (0) alkyne complexes is about at $1680-1800 \mathrm{~cm}^{-1}$ corresponding to a lowering by $410-510 \mathrm{~cm}^{-1}(20-23 \%)$ [1214,16,17]. In the five-coordinate platinum(II) complexes with the electron-withdrawing alkynes the relative lowering is also much higher ($15-19 \%$) [10,11] than in 2 , pointing to a greater extent of π back-donation from platinum orbitals into π^{*} antibonding orbitals of the alkynes.

A quantitative analysis of the degree of π backdonation on the basis of $\nu(\mathrm{C} \equiv \mathrm{C})$ failed due to a strong mixing between the $\nu(\mathrm{C} \equiv \mathrm{C})$ and the $\nu(\equiv \mathrm{C}-\mathrm{H})$ as can be seen by comparison of the phenylacetylene complex $\mathbf{2 d}$ with the deuterated complex 2 e (Table 2). In the same way, a strong mixing of $\delta\left(\mathrm{CH}_{2}\right)$ with $\nu(\mathrm{C}=\mathrm{C})$ in Zeise's salt prevents to calculate the degree of π backdonation from vibrational spectra [15]. But there is no doubt, that the π back-donation in the platinum(II)
alkyne complexes $\mathbf{2}$ is only of minor importance. Thus, calculations of $\left[\mathrm{PtCl}_{3}(\mathrm{RC} \equiv \mathrm{CR}]^{-}(\mathrm{R}=\mathrm{Me}, \mathrm{Et})\right.$ show that there is a σ donation from alkyne to platinum of $0.33(\mathrm{R}=\mathrm{Me})$ and $0.35(\mathrm{R}=\mathrm{Et})$ electrons and a π back-donation of $-0.07(\mathrm{R}=\mathrm{Me})$ and $-0.05(\mathrm{R}=\mathrm{Et})$ electrons only [9].

$$
\begin{aligned}
& \text { 2.3. Structure of }[\mathrm{K}(18-\mathrm{cr}-6)]\left[\mathrm{PtCl}_{3}(\mathrm{PhC} \equiv \mathrm{CD})\right] \\
& \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \mathrm{e} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)
\end{aligned}
$$

Suitable crystals for X-ray structure determination were obtained by slow condensation of diethyl ether into a solution of $2 \mathbf{e}$ in methylene chloride at $-25^{\circ} \mathrm{C}$. The molecular structure is shown in Fig. 1. Selected bond lengths and angles are listed in Table 3. The complex crystallizes in discrete molecules as methylene chloride solvate.

The length of the $\mathrm{C}-\mathrm{C}$ triple bond in 2 e is $1.23(1) \AA$. Thus, a significant elongation caused by the coordina-

Fig. 1. Molecular structure of $[\mathrm{K}(18-\mathrm{cr}-6)]\left[\mathrm{PtCl}_{3}(\mathrm{PhC} \equiv \mathrm{CD})\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathbf{2 e} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}\right), 50 \%$ thermal ellipsoids.

Table 3
Selected interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$ for compound $2 \mathrm{e} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$

$\mathrm{Pt}(1)-\mathrm{C}(1)$	$2.11(1)$	$\mathrm{K}(1)-\mathrm{Cl}(2)$	$3.331(3)$
$\mathrm{Pt}(1)-\mathrm{C}(2)$	$2.155(8)$	$\mathrm{K}(1)-\mathrm{Cl}(3)$	$3.220(3)$
$\mathrm{Pt}(1)-\mathrm{Cl}(1)$	$2.295(2)$	$\mathrm{K}(1)-\mathrm{Cl}(4)$	$3.389(4)$
$\mathrm{Pt}(1)-\mathrm{Cl}(2)$	$2.307(2)$	$\mathrm{C}(1)-\mathrm{C}(2)$	$1.23(1)$
$\mathrm{Pt}(1)-\mathrm{Cl}(3)$	$2.317(2)$	$\mathrm{C}(2)-\mathrm{C}(3)$	$1.44(1)$
$\mathrm{K}(1)-\mathrm{O}(1) \ldots \mathrm{K}(1)-\mathrm{O}(6)$	$2.829(5) \ldots 2.901(6)$		
$\mathrm{C}(1)-\mathrm{Pt}(1)-\mathrm{Cl}(1)$	$87.8(3)$	$\mathrm{Cl}(1)-\mathrm{Pt}(1)-\mathrm{Cl}(2)$	$178.65(8)$
$\mathrm{C}(1)-\mathrm{Pt}(1)-\mathrm{Cl}(2)$	$90.8(3)$	$\mathrm{Cl}(1)-\mathrm{Pt}(1)-\mathrm{Cl}(3)$	$91.43(9)$
$\mathrm{C}(1)-\mathrm{Pt}(1)-\mathrm{Cl}(3)$	$165.8(3)$	$\mathrm{Cl}(2)-\mathrm{Pt}(1)-\mathrm{Cl}(3)$	$89.86(8)$
$\mathrm{C}(2)-\mathrm{Pt}(1)-\mathrm{Cl}(1)$	$92.3(3)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{Cl}(3)$	$75.3(6)$
$\mathrm{C}(2)-\mathrm{Pt}(1)-\mathrm{Cl}(2)$	$86.6(2)$		$164.8(9)$
$\mathrm{C}(2)-\mathrm{Pt}(1)-\mathrm{Cl}(3)$	$160.5(2)$		

tion of $\mathrm{PhC} \equiv \mathrm{CD}$ to platinum $(\mathrm{II})(\mathrm{PhC} \equiv \mathrm{CH}: d(\mathrm{C} \equiv \mathrm{C})=$ $1.208(1) \AA[18])$ cannot be proved. The angle between the planes PtCl_{3} and $\mathrm{Pt}(\mathrm{C} \equiv \mathrm{C})$ amounts to $82.5(5)^{\circ}$. A similar value was found in the 3-hexyne complex 1b ($\mathrm{R}=\mathrm{R}^{\prime}=\mathrm{Et}$) (81°) and in Zeise's salt itself (84.1 ${ }^{\circ}$) whereas both planes are perpendicular in the 2-butyne complex 1a $[9,19]$.

The out-of-plane bending of the phenyl group (defined by the angle $180^{\circ}-\angle \mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$) is $15.2(9)^{\circ}$, being in the range ($12-21^{\circ}$) of other platinum(II) alkyne complexes [9,20-22] and much smaller than in platinum(0) alkyne complexes (38-41 $)$ [23-25]. The bent away of the terminal D atom (H 1) will not be discussed because it could be located relatively imprecisely only.

The phenyl ring of phenylacetylene is twisted by 33.9 (7) ${ }^{\circ}$ from the $\operatorname{Pt}(\mathrm{C} \equiv \mathrm{C})$ plane. This fact and the bending of the phenyl group (15.2(9) ${ }^{\circ}$) clearly show that a conjugation between π orbitals of the $\mathrm{C}-\mathrm{C}$ triple bond and the phenyl substituent does not play any role. The twist angles (Ph vs. $\mathrm{M}(\mathrm{C} \equiv \mathrm{C}$)) in phenylacetylene complexes exhibit a wide range of variation: Angles of 8.3° in $\left[\mathrm{K}(18-\mathrm{cr}-6]\left[\mathrm{WF}_{5}(\mathrm{PhC} \equiv \mathrm{CH})\right] \cdot \mathrm{MeCN}[26]\right.$ and of 10.3° in $\left[\mathrm{PPh}_{4}\right]\left[\mathrm{WCl}_{5}(\mathrm{PhC} \equiv \mathrm{CH})\right]$ [27] allow π conjugation between the triple bond and the phenyl ring, whereas angles of 24.1° in $\left[\mathrm{W}\left(\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)_{2}(\mathrm{ma})(\mathrm{PhC} \equiv \mathrm{CH})\right]$ (ma $=\mathrm{maleic}$ anhydride) [28] or 38° in $[\mathrm{Cu}(\mathrm{PhC} \equiv \mathrm{CH})(\mathrm{phen})][29]$ do not.

The cation $[\mathrm{K}(18-\mathrm{cr}-6)]^{+}$has close contacts both to the trans $(\mathrm{Cl} 3)$ and to one of the cis $(\mathrm{Cl} 2)$ chlorine atoms $(d(\mathrm{~K} 1-\mathrm{Cl} 3)=3.331(3) \AA, d(\mathrm{~K} 1-\mathrm{Cl} 2)=3.220(3)$ \AA) of the PtCl_{3} moiety. The distance of potassium to the mean plane of the crown ether defined by its six oxygen atoms is $0.639(2) \AA$. The angle between the mean plane of the crown ether and the PtCl_{3} plane is 110.3°. All these values are very similar to those in the 3-hexyne complex $[\mathrm{K}(18-\mathrm{cr}-6)]\left[\mathrm{PtCl}_{3}(\mathrm{EtC} \equiv \mathrm{CEt})\right]$ (1b) $\left(d(\mathrm{~K}-\mathrm{cr})=0.771(2) \AA ; \angle \mathrm{PtCl}_{3} / \mathrm{cr}=105.5^{\circ}\right)$. Different from 2 e , the contact of K^{+}to $\mathrm{Cl}_{\text {trans }}(3.126(5) \AA$) is more tight than those to $\mathrm{Cl}_{\text {cis }}(3.356(6) \AA$) in 1b [9]. In

2e there is a solvent molecule (methylene chloride) coordinated to potassium via one of its chlorine atoms $(d(\mathrm{~K} 1-\mathrm{Cl} 4)=3.389(4) \AA)$.

The experimental structure of 2 e corresponds well with the calculated structure of the anion $\left[\mathrm{PtCl}_{3}(\mathrm{PhC} \equiv \mathrm{CH})\right]^{-}$, see Table 4. The bond lengths $d(\mathrm{C} \equiv \mathrm{C})$ and $d(\equiv \mathrm{C}-\mathrm{C})$ agree within the 3σ criterion. As experimentally found, the phenylacetylene ligand in the calculated structure is not perpendicular to the PtCl_{3} plane (calc.: 86.9°; obs.: 82.5°). Furthermore, the calculations reflect - in principle - correctly the out-ofplane bending of the phenyl group (calc.: 11.6°; obs.: 15.2°) and the twist between the phenyl group and the $\mathrm{Pt}(\mathrm{C} \equiv \mathrm{C})$ moiety (calc.: 35.4°; obs.: 33.9°).

The investigations demonstrate that complexes of Zeise's salt type with terminal alkynes as ligands are relatively stable and can be properly prepared provided that platinum catalyzed oligomerization reaction of terminal alkynes are suppressed. The molecular structure of $[\mathrm{K}(18-\mathrm{cr}-6)]\left[\mathrm{PtCl}_{3}(\mathrm{PhC} \equiv \mathrm{CD})\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ is the first example for a platinum(II) complex with a terminal alkyne ligand.

Table 4
Results of ab initio MO calculations (distances in \AA, angles in ${ }^{\circ}$) of $\left[\mathrm{PtCl}_{3}(\mathrm{PhC} \equiv \mathrm{CH})\right]^{-}$in comparison with experimental data of $2 \mathbf{e}$. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$

	$\mathbf{2 e} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (exp. data)	$\left[\mathrm{PtCl}_{3}(\mathrm{PhC} \equiv \mathrm{CH}]^{-}\right.$ (calc. data)
$\mathrm{C} \equiv \mathrm{C}$	$1.23(1)$	$1.223(1.172)$
$\equiv \mathrm{C}-\mathrm{C}$	$1.44(1)$	$1.474(1.460)$
$\angle \mathrm{C} \equiv \mathrm{C}-\mathrm{C}$	$164.8(9)$	$168.4(180)$
$\mathrm{Pt}-\mathrm{C}(\mathrm{H}) \equiv$	$2.11(1)$	2.250
$\mathrm{Pt}-\mathrm{C}(\mathrm{Ph}) \equiv$	$2.155(8)$	2.266
$\mathrm{Pt}-\mathrm{Cl}_{\text {cis }}$	$2.307(2) / 2.295(2)$	$2.333 / 2.338$
$\mathrm{Pt}-\mathrm{Cl}_{\text {truns }}$	$2.317(2)$	2.315
$\mathrm{Cl}{ }_{3} \mathrm{Pt} / \mathrm{PtC} \equiv \mathrm{C}$	$82.5(5)$	86.9
$\mathrm{Pt}(\mathrm{C} \equiv \mathrm{C}) / \mathrm{Ph}$	$33.9(7)$	35.4

[^2]
3. Experimental section

All preparations were carried out under argon using standard Schlenk techniques. The solvents were dried and distilled prior to use. NMR spectra were obtained on Jeol JNM-FX200 and Varian Gemini 300 spectrometers. Chemical shifts are relative to $\mathrm{CHDCl}{ }_{2}$ ($\delta 5.32$ $\mathrm{ppm})$ and $C \mathrm{D}_{2} \mathrm{Cl}_{2}(\delta 53.8 \mathrm{ppm})$ as internal references. IR and Raman spectra were recorded on a Bruker IFS66 FT-IR spectrometer (with Raman unit) using CsI pellets. $[\mathrm{K}(18-\mathrm{cr}-6)]\left[\mathrm{PtCl}_{3}(\mathrm{MeC} \equiv \mathrm{CMe})\right]$ (1a) was synthesized according to literature procedure [9].

3.1. Synthesis of $[\mathrm{K}(18-\mathrm{cr}-6)]\left[\mathrm{PtCl}_{3}(\mathrm{RC} \equiv \mathrm{CH})\right](2 a-\boldsymbol{e})$

In a typical synthesis, $\quad[\mathrm{K}(18-\mathrm{cr}-6)]\left[\mathrm{PtCl}_{3}(\mathrm{MeC} \equiv\right.$ CMe)] (1a) ($200 \mathrm{mg}, 0.30 \mathrm{mmol}$) was placed into a Schlenk tube and dissolved in a solution of the 1-alkyne in methylene chloride ($5 \mathrm{ml}, 1.5 \mathrm{M}$) at $-20^{\circ} \mathrm{C}$. The reaction solution was stirred for 30 min at this temperature followed by the removal of the solvent under reduced pressure. Another five times the residue was dissolved at $-20^{\circ} \mathrm{C}$ in the solution of the 1 -alkyne in methylene chloride ($5 \mathrm{ml}, 1.5 \mathrm{M}$). Finally, the residue was dissolved in the $\mathrm{CH}_{2} \mathrm{Cl}_{2} / 1$-alkyne solution (2 ml) and diethyl ether (5 ml) was added. The precipitate was filtered off, washed with diethyl ether and dried briefly in vacuo (degree of conversion: 100%, yield: $>50 \%$).

2a: see [9].
2b: Anal. Found: C, 31.44; $\mathrm{H}, 4.96 ; \mathrm{Cl}, 15.62$. $\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{Cl}_{3} \mathrm{KO}_{6} \mathrm{Pt}$ (687.01). Calc.: $\mathrm{C}, 31.47$; $\mathrm{H}, 4.99$; $\mathrm{Cl}, 15.48$. Fp . (dec.): $85-88^{\circ} \mathrm{C}$. Infrared: $\nu(\equiv \mathrm{C}-\mathrm{H})=$ $3169 \mathrm{~cm}^{-1}(\mathrm{~m}), \nu(\mathrm{C}-\mathrm{O})=1109 \mathrm{~cm}^{-1}(\mathrm{~s}), \nu(\mathrm{Pt}-\mathrm{Cl})=$ $334(\mathrm{sh}), 325(\mathrm{~m}), 313(\mathrm{sh}) \mathrm{cm}^{-1}$. Raman: $\nu(\mathrm{C} \equiv \mathrm{C})=$ $1938 \mathrm{~cm}^{-1}(\mathrm{~m}), \nu(\mathrm{Pt}-\mathrm{Cl})=335(\mathrm{~s}), 313(\mathrm{~m}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 200 \mathrm{MHz}, 233 \mathrm{~K}\right): \delta\left(\mathrm{CH}_{3}\right)=0.85(\mathrm{t})$, $\left(\mathrm{Me}-\mathrm{CH}_{2}\right)=1.37$ (sext), (Et-C H_{2}) $=1.74$ (quin), $\left(\equiv \mathrm{C}-\mathrm{CH}_{2}\right)=2.46\left(\mathrm{dt},{ }^{4} J(\mathrm{H}, \mathrm{H})=2.2 \mathrm{~Hz}\right),(\equiv \mathrm{C}-H)=$ $2.91\left(\mathrm{t},{ }^{4} J(\mathrm{H}, \mathrm{H})=2.2 \mathrm{~Hz},{ }^{2} J(\mathrm{Pt}, \mathrm{H})=68 \mathrm{~Hz}\right),\left(\mathrm{O}-\mathrm{C}_{2}\right)$ $=3.57$ (s). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 50 \mathrm{MHz}, 233 \mathrm{~K}\right)$: $\delta\left(\mathrm{CH}_{3}\right)=13.4,\left(\mathrm{Me}-\mathrm{CH}_{2}\right)=18.0,\left(\mathrm{Et}-\mathrm{CH}_{2}\right)=21.9$, $\left(\equiv \mathrm{C}-\mathrm{CH}_{2}\right)=32.5, \quad(C \equiv \mathrm{C}-\mathrm{H})=58.3, \quad\left(\mathrm{O}-\mathrm{CH}_{2}\right)=$ $70.0,(\equiv C-H)=80.1$.

2c: Anal. Found: $\mathrm{C}, 31.32 ; \mathrm{H}, 4.91 ; \mathrm{Cl}, 15.99$. $\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{Cl}_{3} \mathrm{KO}_{6} \mathrm{Pt}$ (687.01). Calc.: $\mathrm{C}, 31.47$; $\mathrm{H}, 4.99$; $\mathrm{Cl}, 15.48$. Fp. (dec.): $91-95^{\circ} \mathrm{C}$. Infrared: $\boldsymbol{\nu}(\equiv \mathrm{C}-\mathrm{H})=$ $3171 \mathrm{~cm}^{-1}(\mathrm{~m}), \nu(\mathrm{C}-\mathrm{O})=1106 \mathrm{~cm}^{-1}(\mathrm{~s}), \nu(\mathrm{Pt}-\mathrm{Cl})=$ 330 (sh), 325 (m), $310(\mathrm{sh}) \mathrm{cm}^{-1}$. Raman: $\nu(\mathrm{C} \equiv \mathrm{C})=$ $1905 \mathrm{~cm}^{-1}(\mathrm{~m}), \nu(\mathrm{Pt}-\mathrm{Cl})=331(\mathrm{~s}), 312(\mathrm{~m}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, 200 \mathrm{MHz}, 233 \mathrm{~K}\right): \delta\left(\mathrm{CH}_{3}\right)=1.51(\mathrm{~s})$, $(\equiv \mathrm{C}-H)=2.87\left(\mathrm{~s},{ }^{2} J(\mathrm{Pt}, \mathrm{H})=70 \mathrm{~Hz}\right),\left(\mathrm{O}-\mathrm{CH}_{2}\right)=$ 3.59 (s). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 50 \mathrm{MHz}, 233 \mathrm{~K}\right): \delta\left(\mathrm{CH}_{3}\right)$ $=29.0,\left(\mathrm{CMe}_{3}\right)=30.3,(C \equiv \mathrm{C}-\mathrm{H})=56.2,\left(\mathrm{O}-\mathrm{CH}_{2}\right)$ $=70.1,(\equiv C-H)=87.9$.

2d: Anal. Found: C, 31.71; $\mathrm{H}, 4.56 ; \mathrm{Cl}, 22.25$. $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{Cl}_{5} \mathrm{KO}_{6} \mathrm{Pt}$ (791.93). Calc.: C, 31.85; H, 4.07;
$\mathrm{Cl}, 22.38$. Fp . (dec.): $85-88^{\circ} \mathrm{C}$. Infrared: $\boldsymbol{\nu}(\equiv \mathrm{C}-\mathrm{H})=$ $3149 \mathrm{~cm}^{-1}(\mathrm{~m}), \nu(\mathrm{C}-\mathrm{O})=1108 \mathrm{~cm}^{-1}(\mathrm{~s}), \nu(\mathrm{Pt}-\mathrm{Cl})=$ $331(\mathrm{~m}), 310(\mathrm{w}) \mathrm{cm}^{-1}$. Raman: $\nu(\mathrm{C} \equiv \mathrm{C})=1908 \mathrm{~cm}^{-1}$ $(\mathrm{m}), \nu(\mathrm{Pt}-\mathrm{Cl})=334(\mathrm{~s}), 311(\mathrm{~m}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 200 \mathrm{MHz}, 233 \mathrm{~K}\right): \delta\left(\mathrm{O}-\mathrm{C}_{2}\right)=3.55(\mathrm{~s})$, $(\equiv \mathrm{C}-H)=3.86\left(\mathrm{~s},{ }^{2} J(\mathrm{Pt}, \mathrm{H})=66 \mathrm{~Hz}\right),(m, p-\mathrm{CH})=$ $7.40(\mathrm{~m}),(o-\mathrm{CH})=8.05(\mathrm{~m}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 50\right.$ $\mathrm{MHz}, 233 \mathrm{~K}): \delta(\equiv \mathrm{C}-\mathrm{H})=63.8, \quad\left(\mathrm{O}-\mathrm{CH}_{2}\right)=69.5$, $(C \equiv \mathrm{C}-\mathrm{H})=75.6,(i-C)=120.4,(m-C)=128.6,(p-$ $C)=129.7,(o-C)=132.1$.

2e: Anal. Found: C, 31.91; H, 4.46; Cl, 22.43. $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{Cl}_{5} \mathrm{DKO}_{6} \mathrm{Pt}$ (792.93). Calc.: $\mathrm{C}, 31.81 ; \mathrm{H}, 4.19$; $\mathrm{Cl}, 22.36$. Fp . (dec.): $87-90^{\circ} \mathrm{C}$. Infrared: $\nu(\equiv \mathrm{C}-\mathrm{D})=$ $2433 \mathrm{~cm}^{-1}(\mathrm{~m}), \nu(\mathrm{C}-\mathrm{O})=1108 \mathrm{~cm}^{-1}(\mathrm{~s}), \nu(\mathrm{Pt}-\mathrm{Cl})=$ $331(\mathrm{~m}), 312(\mathrm{w}) \mathrm{cm}^{-1}$. Raman: $\nu(\mathrm{C} \equiv \mathrm{C})=1828 \mathrm{~cm}^{-1}$ $(\mathrm{m}), \nu(\mathrm{Pt}-\mathrm{Cl})=334(\mathrm{~m}), 312(\mathrm{w}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 200 \mathrm{MHz}, 233 \mathrm{~K}\right): \delta\left(\mathrm{O}-\mathrm{CH}_{2}\right)=3.55(\mathrm{~s})$, $(m, p-\mathrm{C} H)=7.40(\mathrm{~m}),(o-\mathrm{C} H)=8.05(\mathrm{~m}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 125 \mathrm{MHz}, 203 \mathrm{~K}\right): \delta(\equiv C-\mathrm{D})=64.0(\mathrm{t}$, $\left.{ }^{1} J(\mathrm{C}, \mathrm{D})=37 \mathrm{~Hz}\right),\left(\mathrm{O}-C \mathrm{H}_{2}\right)=70.0,(C \equiv \mathrm{C}-\mathrm{D})=75.5$, $(i-C)=120.3,(m-C)=128.4,(p-C)=129.6,(o-C)=$ 131.1.

3.2. X-ray structure determination

A STOE-IPDS diffractometer was used. Intensities were collected with graphite monochromated Mo $K \alpha$ radiation ($\lambda=0.71073 \AA$). All non-hydrogen atoms were refined anisotropically. The H atoms have been

Table 5
Crystal data and structure refinement for $\mathbf{2 e} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$

Formula	$\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{Cl}_{5} \mathrm{DKO}_{6} \mathrm{Pt}$
Mol. wt.	792.93
Temperature	$220(2) \mathrm{K}$
Radiation	$\mathrm{Mo} K \alpha$
Crystal size	$0.3 \times 0.2 \times 0.1 \mathrm{~mm}^{3}$
Crystal system	triclinic
Space group	$\mathrm{P} 1(\mathrm{No} .2)$
Z	2
a, b, c	$10.155(2), 11.368(3), 14.047(2) \AA$
α, β, γ	$86.28(2), 70.42(1), 77.64(2)^{\circ}$
V	$1492.4(5) \AA^{3}$
$D_{\text {calc }}$	$1.762 \mathrm{~g} \mathrm{~cm}^{-3}$
$\mu($ Mo $K \alpha)$	$5.32 \mathrm{~mm}^{-1}$
$F(000)$	776
θ Range for data collection	$1.83-24.12^{\circ}$
Total data	13121
Total unique data	4458
Observed data $(F>4 \sigma(F))$	3939
$R_{\text {in }} \mathrm{t}$.	0.0987
$w R 2$	0.0994
$R 1$	0.0418
GooF	1.048
Parameters	426
Residual density max. $/$ min.	$1.198 /-1.722 \mathrm{e} \AA^{-3}$

Table 6
Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters ($\mathrm{A}^{2} \times 10^{3}$) for $2 \mathbf{e} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2} . U_{\text {eq }}$ is defined as one third of the trace of the orthogonalized $U_{i j}$ tensor

Atom	x	y	z	$U_{\text {eq }}$
$\mathrm{Pt}(1)$	$5873(1)$	$-1421(1)$	$6377(1)$	$40(1)$
$\mathrm{K}(1)$	$6646(2)$	$1714(2)$	$7684(1)$	$42(1)$
$\mathrm{Cl}(1)$	$7212(3)$	$-3197(2)$	$5585(2)$	$70(1)$
$\mathrm{Cl}(2)$	$4492(2)$	$367(2)$	$7150(2)$	$50(1)$
$\mathrm{Cl}(3)$	$7693(2)$	$-1158(2)$	$6938(2)$	$56(1)$
$\mathrm{Cl}(4)$	$6647(4)$	$4570(3)$	$8242(4)$	$124(2)$
$\mathrm{Cl}(5)$	$9417(5)$	$4844(4)$	$8083(5)$	$163(2)$
$\mathrm{O}(1)$	$4445(7)$	$2060(5)$	$9596(4)$	$57(2)$
$\mathrm{O}(2)$	$7301(7)$	$1453(5)$	$9519(5)$	$60(2)$
$\mathrm{O}(3)$	$9536(6)$	$1083(5)$	$7684(5)$	$58(2)$
$\mathrm{O}(4)$	$8945(6)$	$2271(5)$	$6020(4)$	$49(1)$
$\mathrm{O}(5)$	$6121(6)$	$3079(5)$	$6044(4)$	$44(1)$
$\mathrm{O}(6)$	$3977(6)$	$3418(5)$	$7940(5)$	$55(1)$
$\mathrm{C}(1)$	$4491(12)$	$-1442(9)$	$5548(8)$	$57(2)$
$\mathrm{C}(2)$	$3913(10)$	$-1864(7)$	$6376(7)$	$52(2)$
$\mathrm{C}(3)$	$2927(9)$	$-2312(7)$	$7243(6)$	$47(2)$
$\mathrm{C}(4)$	$1478(11)$	$-2004(9)$	$7438(9)$	$65(3)$
$\mathrm{C}(5)$	$559(10)$	$-2417(9)$	$8239(8)$	$67(3)$
$\mathrm{C}(6)$	$1046(12)$	$-3219(10)$	$8921(8)$	$70(3)$
$\mathrm{C}(7)$	$2508(14)$	$-3540(10)$	$8735(9)$	$74(3)$
$\mathrm{C}(8)$	$3447(10)$	$-3100(8)$	$7917(7)$	$56(2)$
$\mathrm{C}(9)$	$8225(14)$	$4938(12)$	$7445(12)$	$104(4)$
$\mathrm{C}(10)$	$4871(14)$	$2006(12)$	$10461(7)$	$74(3)$
$\mathrm{C}(11)$	$6180(14)$	$1077(11)$	$10325(8)$	$70(3)$
$\mathrm{C}(12)$	$8665(14)$	$737(11)$	$9437(9)$	$74(3)$
$\mathrm{C}(13)$	$9779(12)$	$1221(11)$	$8607(9)$	$70(3)$
$\mathrm{C}(14)$	$10635(10)$	$1388(10)$	$6824(9)$	$65(2)$
$\mathrm{C}(15)$	$10160(10)$	$1343(10)$	$5947(8)$	$64(3)$
$\mathrm{C}(16)$	$8565(10)$	$2383(9)$	$5120(6)$	$53(2)$
$\mathrm{C}(17)$	$7299(10)$	$3402(8)$	$5265(6)$	$51(2)$
$\mathrm{C}(18)$	$4866(10)$	$4003(8)$	$6225(7)$	$55(2)$
$\mathrm{C}(19)$	$3655(10)$	$3598(10)$	$7018(8)$	$56(2)$
$\mathrm{C}(20)$	$2867(10)$	$3048(11)$	$8739(8)$	$66(3)$
$\mathrm{C}(21)$	$3241(12)$	$2995(12)$	$9679(8)$	$76(3)$

found in the difference Fourier map and could be refined isotropically except the H atoms of the solvent molecule which were placed in calculated positions. The structure was solved by direct methods using the program SHELXS-86 [30]. The structure refinement was carried out by full-matrix least-squares procedures on F^{2} (SHELXL-93 [31]). Crystal data and details of the data collection and refinement for $\mathbf{2 e}$ are summarized in Table 5. The final atomic coordinates are listed in Table 6.

3.3. Quantum chemical calculations

Optimization of the structure $\left[\mathrm{PtCl}_{3}(\mathrm{PhC} \equiv \mathrm{CH})\right]^{-}$was carried out with the program TURBOMOLE [32] by using an effective core potential and DZ basis functions for Pt [33] and STO-3G basis functions for all other atoms on an IBM RS / 6000-580 work station (ca. 10 h CPU-time). Such an unbalanced basis set may not be
able to compare energies but is useful for getting optimized structures.

4. Supplementary material

Tables of hydrogen atom positions and isotropic thermal parameters, anisotropic thermal parameters, all bond distances and bond angles are available from the Fachinformationszentrum Karlsruhe, D-76344 Eggen-stein-Leopoldshafen, citing the deposition No. CSD407056, the authors and the reference.

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie. We thank the companies Merck (Darmstadt) and Degussa (Hanau) for gifts of chemicals as well as Dr. Karla Schenzel for IR and Raman spectroscopic investigations.

References

[1] W.C. Zeise, Pogg. Ann. Phys. 9 (1827) 632.
[2] J. Chatt, L.A. Duncanson, J. Chem. Soc. (1953) 2939.
[3] J. Chatt, R.G. Guy, L.A. Duncanson, J. Chem. Soc. (1961) 827.
[4] J. Chatt, R.G. Guy, L.A. Duncanson, D.T. Thomson, J. Chem. Soc. (1963) 5170
[5] A.L. Beauchamp, F.D. Rochon, T. Theophanides, Can. J. Chem. 51 (1973) 126.
[6] R. Spagna, L. Zambonelli, Acta Crystallogr. B29 (1973) 2302.
[7] R.J. Dubey, Acta Crystallogr. B32 (1976) 199.
[8] S.V. Bukhovets, N.K. Pukhov, Zh. Neorg. Khim. 3 (1958) 1714.
[9] D. Steinborn, M. Tschoerner, A.v. Zweidorf, J. Sieler, H. Bögel, Inorg. Chim. Acta 234 (1995) 47.
[10] H.C. Clark, L.E. Manzer, Inorg. Chem. 13 (1974) 1291.
[11] V. de Felice, A. de Renzi, F. Giordano, D. Tesauro, J. Chem. Soc. Dalton Trans. (1993) 1927.
[12] J.H. Nelson, J.J.R. Reed, H.B. Jonassen, J. Organomet. Chem. 29 (1971) 163.
[13] H.D. Empsall, B.L. Shaw, A.J. Stringer, J. Chem. Soc. Dalton Trans. (1976) 185.
[14] N.M. Boag, M. Green, D.M. Grove, J.A.K. Howard, J.L. Spencer, F.G.A. Stone, J. Chem. Soc. Dalton Trans. (1980) 2170.
[15] J. Hiraishi, Spectrochim. Acta 25A (1969) 749.
[16] A. Furlani, P. Carusi, M.V. Russo, J. Organomet. Chem. 67 (1974) 315.
[17] P.B. Tripathy, D.M. Roundhill, J. Organomet. Chem. 24 (1970) 247.
[18] A.P. Cox, I.C. Ewart, W.M. Stigliani, J. Chem. Soc. Faraday Trans. 2 (71) (1975) 504.
[19] R.A. Love, T.F. Koetzle, G.J.B. Williams, L.C. Andrews, R. Bau, Inorg. Chem. 14 (1975) 2653.
[20] G.R. Davies, W. Hewertson, R.H.B. Mais, P.G. Owston, C.G. Patel, J. Chem. Soc. (A), (1970) 1873.
[21] B.W. Davies, N.C. Payne, J. Organomet. Chem. 102 (1975) 245.
[22] R. Uson, J. Fornies, M. Tomas, B. Menjon, C. Fortuno, A.J. Welch, D.E. Smith, J. Chem. Soc. Dalton Trans. (1993) 275
[23] S. Jagner, R.G. Hazell, S.E. Rasmussen, J. Chem. Soc. Dalton Trans. (1976) 337.
[24] B.W. Davies, N.C. Payne, J. Organomet. Chem. 99 (1975) 315.
[25] J.O. Glanville, J.M. Stewart, S.O. Grim, J. Organomet. Chem. 7 (1967) 9.
[26] P. Neumann, K. Dehnicke, D. Fenske, G. Baum, Z. Naturforsch. 46b (1991) 999.
[27] M. Kersting, K. Dehnicke, D. Fenske, J. Organomet. Chem. 346 (1988) 201.
[28] J.R. Morrow, T.L. Tonker, J.L. Templeton, J. Am. Chem. Soc. 107 (1985) 6956
[29] M. Munakata, S. Kitagawa, I. Kawada, M. Maekawa, H. Shimono, J. Chem. Soc. Dalton Trans. (1992) 2225.
[30] G.M. Sheldrick, Acta Crystallogr. A46 (1990) 467.
[31] G.M. Sheldrick, SHELXL 93, Program for the refinement of crystal structures, Univ. of Göttingen, Germany (1993).
[32] R. Ahlrichs, M. Bär, M. Häser, H. Horn, C. Kölmel, Chem. Phys. Lett. 162 (1989) 165.
[33] D. Andrae, U. Häußermann, M. Dolg, H. Stoll, H. Preuß, Theor. Chim. Acta 77 (1990) 123.

[^0]: * Corresponding author.
 ${ }^{1}$ Abbreviation: 18 -cr-6 $=18$-crown- 6 .

[^1]: ${ }^{\mathrm{a}} \Delta \delta=\delta_{\text {complex }}-\delta_{\text {free alkyne }}$
 ${ }^{\mathrm{b}} \Delta J=J_{\text {complex }}-J_{\text {free alkyne }}$.
 ${ }^{\mathrm{c}} \mathrm{PhC} \equiv \mathrm{CD}$ as ligand.

[^2]: ${ }^{a}$ The calculated values for $\mathrm{PhC} \equiv \mathrm{CH}$ are given in parentheses.

